arindam.chy's picture
Dr. Arindam Indra
Assistant Professor
Department of Chemistry, IIT BHU
arindam.chy@iitbhu.ac.in
9919080675
Area of Interest: 
Artificial photosynthesis, Energy conversion, MOF derived catalysts for organic reaction, Photocatalytic organic reaction

Arindam Indra
Assistant Professor
Department of Chemistry
IIT BHU (Varanasi)
Varanasi, Uttar Pradesh
India-221005
E-mail: arindam.chy@iitbhu.ac.in
Mobile: +919919080675


Ph.D and postdoc positions are available for the motivated students

Academic Background
Ph.D, IIT Bombay, Mumbai, India, 2011
M.Sc, The University of Burdwan,  Burdwan, West Bengal, 2006
B.Sc, The University of Burdwan,  Burdwan, West Bengal, 2004

Professional Experience
Assistant Professor, IIT BHU, Varanasi, India (2018-present) 
Assistant Research Professor, Hanyang University, Seoul, South Korea (2016-2018)
Group leader for the catalysis and synthesis group, BasCat, Berlin, Germany (2015-2016)
Postdoctoral research associate, Technische Universität Berlin, Germany (2011-2014)

Selected Publications

  • A. Indra, U. Paik, T. Song, Angew. Chem. Int. Ed. 2018, 57, 1241-1245 (Cover page).
  • A. Indra, T. Song, U. Paik, Adv. Mater. 2018, 1705146.
  • A. Indra, A. Acharjya,  P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, S. Lochbrunner, A. Thomas, M. Driess,​ Angew. Chem. Int. Ed. 2017, 56, 1653-1657.
  • A. Indra, P. W. Menezes, C. Das, D. Schmeißer, M. Driess, Chem. Commun. 2017, 53, 8641-8644 (Cover page).
  • A. Indra, P. W. Menezes, N. R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 2014, 136, 17530-17536.
  • A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 13206-13210 (VIP paper).
  • A. Indra, M. Doble, S. Bhaduri, G. K. Lahiri, ACS Catal. 2011, 1, 511-518.

 

 

Artificial Photosynthesis
Artificial photosynthesis can transform COinto useful organics with the help of an efficient photocatalyst. This leads to renewable carbon fixation and sustainable energy conversion. The goal of this project is to build up artificial leaf which can work like natural system under visible light irradiation. Development of the photoelectrochemical cell (PEC) to continue the process of sustainable energy conversion  and production of  ~1 L of H2 per day by using the sunlight will be the ultimate achievement of this project.

Metal Organic Framework (MOF) Derived Catalysts for the Energy Conversion and Storage
Exploring new materials with high efficiency and durability for the electrochemical processes is the primary requirement for the development in the field of energy conversion and storage. Application of metal organic framework (MOF) derived materials for the electrochemical energy conversion like oxygen evolution, hydrogen evolution, oxygen reduction or battery materials have been found to be an emerging field of research in last few years. In this project, we will focus on the systematic design of the materials from MOF and control over their inherent properties to enhance their electrochemical performances.

Photocatalytic Organic Reactions with Quantum Dots and Semiconductors 
Photocatalytic organic reactions such as selective oxidation, oxidative couplings reactions by using visible light active photocatalyst are of great importance towards achieving sustainable chemistry. In practical applications there are several challenges like low selectivity, sluggish reaction rate etc. Therefore, or objective is to develop suitable protocol to improve the activity and selectivity. We investigate the application of semiconductor materials or quantum dots by band engineering to improve the selectivity. Development of the cocatalyst systems to control the electron-hole separation and transport is also the objective of this work. 

Bioinspired Electrochemical Oxygen Evolution Reaction
Electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have been considered to play the pivotal role for the energy conversion and storage. Designing of new catalyst systems following the principle of nature could be the most useful way of energy conversion. In this respect, understanding the natural catalyst systems is essential to improve the efficiency of the artificial catalysts. In this project we shall develop transition metal based catalysts which can mimic the nature both structurally and functionally. Comparison of the natural and synthesized system and correlating them in the molecular level will also be studied to develop the basic understanding of this subject.

 

37 Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride
S. Dutta, A. Indra, Y. Feng, H. S. Han, T. Song
Appl. Catal. B, 2019, 241, 521-527
 
36 Helical cobalt borophosphates to master durable overall water-splitting
P. W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos, S. Hoffmann
Energy & Environ. Sci. 2019, 12, 988-999

Impact factor: 33.25, Citation:6
https://pubs.rsc.org/en/content/articlehtml/2018/ee/c8ee01669k
 
35 Metal organic framework derived materials: Progress and prospects for the energy conversion and storage
A. Indra, T. Song, U. Paik
Adv. Mater. 2018, 1705146.
Impact factor: 25.809, Citation:32
 
34 Electrochemical energy conversion and storage with zeolitic imidazolate framework derived materials: A
perspective

S. Dutta, Z. Liu, H. Han, A. Indra,* T. Song
ChemElectroChem, 2018, 5, 3571-3588
Impact factor: 3.975, Citation: 0
https://onlinelibrary.wiley.com/doi/full/10.1002/celc.201801144 
 
33 An Intriguing Pea‐Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogen‐Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting
S. Dutta, A. Indra, H. S. Han, T. Song
ChemSusChem, 2018, 11, 3956-3964
 
32 Photocatalytic and photosensitized water splitting: A plea for well-defined and commonly accepted protocol
A. Indra, P. W. Menezes, M. Driess
Comptes Rendus Chimie 2018, 21, 909-915.

Impact factor: 2.366, Citation: 0
https://www.sciencedirect.com/science/article/pii/S1631074818301103

 
31 Boosting electrochemical water oxidation with metal hydroxide carbonate templated Prussian blue analogues
A. Indra, U. Paik, T. Song
Angew. Chem. Int. Ed. 2018, 57, 1241-1245 (Cover page).
Impact factor: 12.102, Citation: 34

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201710809
 
30 Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives
A. S. Hazari, A. Indra,*  G. K. Lahiri*
RSC Adv. 2018, 8, 28895-28908 (Invited paper).
Impact factor: 3.049, Citation: 1
 
29 Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity
S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik
ACS Appl. Mater. Interfaces 2017, 9, 33766-33774.
Impact factor: 8.456, Citation: 44

https://pubs.acs.org/doi/abs/10.1021/acsami.7b07984
 
28 Boosting Visible‐Light‐Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System
A. Indra, A. Acharjya, P. W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, S. Lochbrunner, A. Thomas, M. Driess
Angew. Chem. Int. Ed. 2017, 56, 1653-1657.
Impact factor: 12.102, Citation: 106
 
27 Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese
P. W. Menezes, A. Indra, V. Gutkin, M. Driess
Chem Commun. 2017, 53, 8018-8021.
Impact factor: 6.164, Citation: 19

https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc03749j
 
26 Alkaline electrochemical water oxidation with multi-shelled cobalt manganese oxide hollow spheres
A. Indra, P. W. Menezes, C. Das, D. Schmeiβer, M. Driess
Chem Commun. 2017, 53, 8641-8644 (Cover page).
Impact factor: 6.164, Citation: 17

https://pubs.rsc.org/en/content/articlelanding/2017/cc/c7cc03566g
 
25 A facile corrosion approach to the synthesis of highly active CoO x water oxidation catalysts
A. Indra, P. W. Menezes, C. Das, C. Göbel, M. Tallarida, D. Schmeiβer, M. Driess
J. Mater. Chem. A 2017, 5, 5171-5177.
Impact factor: 10.733, Citation: 31

https://pubs.rsc.org/en/content/articlelanding/2017/ta/c6ta10650a
 
24 Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting
P. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess
ACS Catal. 2017, 7, 103-109.
Impact factor: 12.221, Citation: 87

https://pubs.acs.org/doi/abs/10.1021/acscatal.6b02666
 
23 Morphology‐Dependent Activities of Silver Phosphates: Visible‐Light Water Oxidation and Dye Degradation
P. W. Menezes, A. Indra, M. Schwarze, F. Schuster, M. Driess
ChemPlusChem2016, 81, 1068-1074.
Impact factor: 3.441, Citation: 7
 
22 A Single‐Source Precursor Approach to Self‐Supported Nickel–Manganese‐Based Catalysts with Improved Stability for Effective Low‐Temperature Dry Reforming of Methane
P. W. Menezes, A. Indra, P. Littlewood, C. Göbel, R. Schomäcker, M. Driess
ChemPlusChem, 2016, 81, 370-377.
Impact factor: 3.441, Citation: 9

https://onlinelibrary.wiley.com/doi/full/10.1002/cplu.201600064
 
21 Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water
P. W. Menezes, A. Indra, A. Bergmann, P. Chernev, C. Walter, H. Dau, P. Strasser, M. Driess
J. Mater. Chem. A 2016, 4, 10014-10021.
Impact factor: 10.733, Citation: 51

https://pubs.rsc.org/en/content/articlelanding/2016/ta/c6ta03644a
 
20 Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?
A. Indra, P. W. Menezes, K. Kailasam, D. Hollmann, M. Schröder, A. Thomas, A. Brückner, M. Driess
Chem Commun. 2016, 52, 104-107.
Impact factor: 6.164, Citation: 58
 
19 Water soluble polymer supported silver and platinum nanoparticles for efficient reduction of 4-nitrophenol
A. Indra, G. K. Lahiri
J. Indian Chem. Soc. 2015, 92, 1791-1798 (Invited paper).
Impact factor: 0.204, Citation: 0

https://www.researchgate.net/publication/287217307
 
18 Significant role of Mn (III) sites in eg1 configuration in manganese oxide catalysts for efficient artificial water oxidation
A. Indra, P. W. Menezes, F. Schuster, M. Driess
J. Photochem. Photobiol. B 2015, 152, 156-161 (Invited paper).
Impact factor: 4.067, Citation: 21
 
17 Uncovering Structure–Activity Relationships in Manganese‐Oxide‐Based Heterogeneous Catalysts for Efficient Water Oxidation
A. Indra, P. W. Menezes, M. Driess
ChemSusChem 2015, 8, 776-785
Impact factor: 7.804, Citation: 53

https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201402812
 
16 High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: morphology-dependent activity
P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I. Zaharieva, M. Schwarze, P. Strasser, H. Dau, M. Driess
ACS Catal. 2015, 5, 2017-2027.
Impact factor: 12.221, Citation: 142
 
15 Using nickel manganese oxide catalysts for efficient water oxidation
P. W. Menezes, A. Indra, O. Levy, K. Kailasam, J. Pfrommer, V. Gutkin, M. Driess
Chem. Commun. 2015, 51, 5005-5008.
Impact factor: 6.164, Citation: 53
 
14 Cobalt–manganese‐based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions
P. W. Menezes, A. Indra, N. R. Sahraie, A. Bergmann, P. Strasser, M. Driess
ChemSusChem 2015, 8, 164-171.
Impact factor: 7.804, Citation: 129

https://onlinelibrary.wiley.com/doi/10.1002/cssc.201402699
 
13 Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides
A. Indra, P. W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida
J. Am. Chem. Soc. 2014, 136, 17530-17536
Impact factor: 14.695, Citation: 291
https://pubs.acs.org/doi/10.1021/ja509348t
 
12 Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry
P. W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Göbel, R. Schomäcker, M. Driess​
ChemSusChem 2014, 7, 2202-2211
Impact factor: 7.804, Citation: 81

https://onlinelibrary.wiley.com/doi/full/10.1002/cssc.201402169
 
11 High Catalytic Synergism between the Components of the Rhenium Complex@ Silver Hybrid Material in Alkene Epoxidations
A. Indra, M. Greiner, A. K. Gericke, R. Schlögl, D. Avnir, M. Driess
ChemCatChem, 2014, 6, 1935-1939.
Impact factor: 4.495, Citation: 6

https://onlinelibrary.wiley.com/doi/full/10.1002/cctc.201402042
 
10 Visible light driven non-sacrificial water oxidation and dye degradation with silver phosphates: multi-faceted morphology matters
A. Indra, P.W. Menezes, M. Schwarze, M. Driess
New J. Chem. 2014, 38, 1942-1945 (Cover page, Invited paper)
Impact factor: 3.069, Citation: 29
 
9 Active Mixed‐Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles
A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess
Angew. Chem. Int. Ed. 2013, 52, 13206-13210 (VIP paper).
Impact factor: 12.102, Citation: 194

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201307543
 
8 Hydroxyapatite supported palladium catalysts for Suzuki–Miyaura cross-coupling reaction in aqueous medium
A. Indra, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Catal. Sci. Technol. 2013, 3, 1625-1633.
Impact factor: 5.726, Citation: 27
 
7 Chemoselective Hydrogenation and Transfer Hydrogenation of Olefins and Carbonyls with the Cluster‐Derived Ruthenium Nanocatalyst in Water
A. Indra, P. Maity, S. Bhaduri, G. K. Lahiri
ChemCatChem, 2013, 5, 322-330.
Impact factor: 4.495, Citation: 16

https://onlinelibrary.wiley.com/doi/full/10.1002/cctc.201200448
 
6 Carbon Monoxide Assisted Self‐Assembled Platinum Nanoparticles for Catalytic Asymmetric Hydrogenation
A. Indra, G. K. Lahiri
Chem. Eur. J. 2012, 18, 6742-6745.
Impact factor: 5.160, Citation: 7
 
5 Control of chemoselectivity in hydrogenations of substituted nitro-and cyano-aromatics by cluster-derived ruthenium nanocatalysts
A. Indra, N. Maity, P. Maity, S. Bhaduri, G. K. Lahiri
J. Catal. 2011, 284, 176-183.
Impact factor: 7.723, Citation: 11

https://www.sciencedirect.com/science/article/pii/S0021951711002995
 
4 Pentacoordinated copper–sparteine complexes with chelating nitrite or nitrate ligand: Synthesis and catalytic aspects
A. Indra, S. M. Mobin, S. Bhaduri, G. K. Lahiri
Chim. Acta 2011, 374, 415-421 (Invited paper).
Impact factor: 2.433, Citation: 9
 
3 Selective hydrogenation of chloronitrobenzenes with an MCM-41 supported platinum allyl complex derived catalyst
A. Indra, P. R. Rajamohanan, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Appl. Catal. A 2011, 399, 117-125.
Impact factor: 4.63, Citation: 16
 
2 Kinetic and scanning transmission electron microscopy investigations on a MCM-41 supported cluster derived enantioselective ruthenium nanocatalyst
A. Indra, M. Doble, S. Bhaduri, G.K. Lahiri
ACS Catal. 2011, 1, 511-518.
Impact factor: 12.221, Citation: 7

https://pubs.acs.org/doi/10.1021/cs200058q
 
1 MCM-41-supported ruthenium carbonyl cluster-derived catalysts for asymmetric hydrogenation reactions
A. Indra, S. Basu, D. G. Kulkarni, C. S. Gopinath, S. Bhaduri, G. K. Lahiri
Appl. Catal. A 2008, 344, 124-130.
Impact factor: 4.63, Citation: 16

https://www.sciencedirect.com/science/article/pii/S0926860X08002408
 

 

 

 
 
 
 
 

 

Research Scholars

 
Baghendra Singh
INSPIRE Fellow
M.Sc (Dr. R. M. L. Avadh University)
Roll no.: 18051010
E-mail: baghendrasingh.rs.chy18@itbhu.ac.in
Mobile: +918726112056
Blood group: A(+)
Research Interest: Metal Organic Framework (MOF)
 Derived Catalysts for Electrochemical Energy Conversion

 

 
Priyanka Maurya
INSPIRE Fellow
M.Sc (University of Allahabad) 

Roll no.: 18051012
E- mail:  priyankamaurya.rs.chy18@itbhu.ac.in
Mobile: +919451972119

Blood group: B(+)
   Research Interest: Self-Supported Zeolitic Imidazole Framework Derived Catalysts for Electrochemical Energy Conversion

 

 
Ved Vyas
JRF

M.Sc (University of Allahabad)
Roll no.: 18051011
E- mail:  vedvyas.rs.chy18@itbhu.ac.in
Mobile: +917897046259
Blood group: B(+)
     Research Interest: Metal Organic Framework Derived Catalysts for Organic Reactions

 

 
       
Ajit Kumar Singh
Teaching Assistant
M.Sc (Banaras Hindu University)
Roll no.: 18051008
E- mail:  ajitkumarsingh.rs.chy18@itbhu.ac.in
Mobile: +917376354741
Blood group: B(+)
Research Interest: Photocatalytic Organic reaction

 

 
        Abhimanyu Yadav
Teaching Assistant
M.Sc (
University of Allahabad)
Roll no.: 18051510
E- mail:  abhimanyu.yadav.rs.chy18@itbhu.ac.in
Mobile: +919005535023
Blood group: B(+)
Research Interest: Layered double hydroxide  

 

                                                                                                                                              
Sr. No. Name Institute Research Area Category
1 Atri Patel IIT(BHU) Metal Organic Framework Project Student
2 Chandan Das NIT Surat Photocatalysis  Internship Student
3 Poulami Sengupta BIT MESRA Metal Organic Framework  Project Student
4 Pourush Gupta IIT(BHU) Metal Organic Framework Project Student
5 Amrendra Singh University of Allahabad Self-Supported MOF Derived catalyst DST INSPIRE Scholar
6 Amit Kumar IISER TVM Metal Organic Framework Internship Student
7 Shekhar Kumar IISER Kolkata Zeolitic Imidazole Framework Internship Student
8  Shreya Singh GFSU Gujarat Layared Double Hydroxide Internship Student
9 Archita Tripathi GFSU Gujarat Photocatalysis Internship Student
10 Abhijeet Rana Banaras Hindu University Zeolitic Imidazole Framework Internship Student
11 Prattay Das Banaras Hindu University Metal Organic Framework Internship Student
12 Rohon Mondal Banaras Hindu University Metal Organic Framework Internship Student
13 Rakesh Priyadarshi Banaras Hindu University Zeolitic Imidazole Framework Internship Student